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Abstract

Purpose – To obtain error estimates for 3D consistent boundary-flux approximations.

Design/methodology/approach – Isoparametric approach is used for constructing finite-element
approximations.

Findings – This research study presents a convergence analysis of 3D boundary-flux
approximations. Error estimates are proved for the approximate solutions of the problem under
consideration.

Research limitations/implications – General results for a consistent boundary-flux problem are
obtained for all 3D domains with Lipschitz-continuous boundary. This investigation will be continued
studying combined effect of curved boundaries and isoparametric numerical integration. An optimal
refined strategy with respect to algorithmic aspects for solving 3D boundary-flux problem also will be
considered.

Practical implications – The obtained results enable engineers to calculate the flux across the
curved boundaries using finite element method (FEM).

Originality/value – The paper presents an isoparametric finite-element method for a 3D consistent
boundary-flux problem in domains with complex geometry. The work is addressed to the
possible-related fields of interest of postgraduate students and specialists in fluid mechanics and
numerical analysis.

Keywords Finite element analysis, Boundary-elements methods, Approximation theory

Paper type Research paper

1. Introduction
Computation of boundary-flux is well motivated concerning various engineering
problems, for instance the classical drift-diffusion model, determination of the behavior
of the body immersed in a viscous incompressible fluid, obtaining of stress intensity
factor, moments of a shell or plate, heat and mass transfer, potential flow,
magnetostatics, elasticity problems, etc.

The finite element method (FEM) is among the most powerful tools for solving
boundary value problems and, in particular, for solving boundary-flux problem. Early
applications of FEM for finding boundary-flux approximations are based on the idea
proposed by Wheeler (1973) and developed by Carey (1982) (Carey et al., 1985). Confine
to polygonal domains and affine FEM Barret and Elliot (1987) proved an asymptotic
error O(h n21/2) in approximate flux, where n is the degree of trial functions.

Various postprocessing techniques for increasing the rate of convergence of the
boundary-flux approximations are developed by Douglas et al. (1974), Lazarov and
Pehlivanov (1989) and Pehlivanov et al. (1992). More recent results concerning
boundary-flux computations are obtained by Carey (2002), Chipot and Rougirel (2001),
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Huang and Zhong (2004), Zheng and Song (2004), etc. The above results are obtained in
polygonal domains. Problems in curved domains need completely different approach,
namely isoparametric approach. Optimal convergence rate for the boundary-flux
approximations in two-dimensional domains with complex geometry was proved by
Andreev and Todorov (2005). Here the optimality is in the sense that isoparametric
approximations have the same rate of convergence as the ones in the affine case where
polygonal domains are considered.

Lenoir (1986), Brenner and Scott (1994) and Andreev and Todorov (2005) give
comparisons between the bilinear forms only in the case when L ¼ D. Comparisons
between bilinear forms arising from general second-order elliptic operator are
presented here.

The present investigation deals with a FEM for 3D boundary flux problem in a
curved domain with Lipschitz-continuous boundary. The paper is organized as
follows. The weak formulation of the boundary-flux problem is compiled in Section 2.
Finite element discretizations and some basic properties of Lenoir map are described in
Section 3. Optimal convergence order for the boundary-flux approximations is proved
in Section 4. This is the main result in the present investigation.

2. Setting of the problem
Let V , R3 be a bounded curved domain with Lipschitz-continuous boundary G.
Define a Dirichlet problem:

P :

find a functioin u satisfying

Lu ¼ f in V;

u ¼ 0 on G

8>><
>>:

The map:

Lu ¼ 2
X3

i; j¼1

›

›xj
aij

›

›xi

� �

is a linear operator with aij [ C 1ðVÞ; i; j ¼ 1; 2; 3. Assume that the matrix
A ¼ ðaijðxÞÞi; j[{1;2;3} is uniformly positive definite in V, i.e. the operator L is
strongly elliptic.

Standard notations for the Sobolev spaces (Ciarlet, 1978) and associated norms and
seminorms are used throughout this consideration. Define the Sobolev space:

H 1
0ðVÞ ¼ {v [ H 1ðVÞ j v ¼ 0 on G};

the bilinear form:

aðu; vÞ ¼

Z
V

X3

i; j¼1

aijðxÞ
›u

›xi

›y

›xi
dx; u; v [ V ¼ H 1

0ðVÞ

and the linear functional:
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ð f ; vÞ ¼

Z
V

fv dx; v [ V:

The bilinear form a( · , · ) is coercive on V £ V, since L is strongly elliptic. The
boundedness of aij on �V implies that a( · , · ) is continuous on H 1(V).

Write the weak problem PW associated with P:

PW :
find a function u [ V such that

aðu; vÞ ¼ ð f ; vÞ ;v [ V:

(

Introduce the usual hypotheses concerning the smoothness of the weak solution:

C1. The boundary G is piecewise C nþ1, n $ 2.

C2. The right hand side f [ W n;1ðVÞ and the weak solution u [ H nþ1ðVÞ.

C3. The coefficients aij [ W n;1ðVÞ.

Define the normal flux q across boundary G by:

q ¼ _s · _n ¼ 2
X3

i; j¼1

aijðxÞ
›u

›xi
cosð_n; xjÞ; x [ G;

where u is the solution of PW, _s ¼ 2Atð7uÞ is a vector function, n is the outward
normal vector to the boundary G and “t” is the sign for transposition.

Define the weak boundary-flux problem as follows:

FW :
find a function q [ H 1=2ðGÞ such that

2 , q; v .¼ aðu; vÞ2 ð f ; vÞ ; v [ H 1ðVÞ;

8<
:

where , · , · . denotes the inner product on the boundary, i.e.

, q; v .¼

Z
G

qv ds:

3. Finite element discretizations
This section dwells largely on tetrahedral triangulations of curved domains. Usually,
when solving a problem in a curved domain V we separate some “nice” domain
V̂ , V, which can be triangulated by straight elements. The domain V̂ is as big as
possible. Triangulate the rest of V by curved elements.

Rewrite some basic definitions concerning finite element triangulations. Assume
that any finite element K [ th is generated by invertible isoparametric finite element
transformation FK defined on one and the same element ðT̂; P̂; ŜÞ called reference finite
element.

Define the reference finite element as follows:

T̂ ¼ x̂ ¼ ðx̂1; x̂2; x̂2Þjx̂i $ 0; i ¼ 1; 2; 3;
X3

i¼1

x̂i # 1

( )
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is the canonical 3-simplex; P̂ ¼ PnðT̂Þ, where Pn is the space of all polynomials of
degree, not exceeding n:

Ŝ ¼ âjâi ¼
ki
n
; i ¼ 1; 2; 3;

X3

i¼1

ki # n; ki [ N< {0}; i ¼ 1; 2; 3

( )

is the set of all Lagrangian interpolation nodes of order n.
The boundary layer of any triangulation th consists of those elements, which have

more than one vertex on the boundary. Unifying all the elements in triangulation th we
obtain an approximate domain Vh ¼ <K[thK with boundary Gh.

Define the finite element space Vh by:

Vh ¼ {y h [ CðVhÞjy hjK [ PK ; K [ th};

where PK ¼ {p : K ! Rjp ¼ p̂+F21
K ; p̂ [ P̂}. It is well known that Vh , H 1ðVhÞ if

the triangulation th is regular.
If a map F(x) is k-times differentiable, we denote the k-th Fréchet derivative of F(x)

by D kF(x). Let Ln (R3; R3) be the space of continuous n-linear mappings from (R 3)n to
R3 and K̂; �K be bounded subsets of R3. For estimating the Fréchet derivatives and
Jacobians we need the following seminorms:

jFj
n;1;K̂

¼
x̂[K̂

sup kDnFðx̂ÞkLnðR3;R3Þ;

jF21j
n;1; �K

¼
�x[ �K

sup kDnF21ð�xÞkLnðR3;R3Þ; n ¼ 0; 1; 2; . . .

for arbitrary sufficiently smooth transformation F : K̂! �K with sufficiently smooth
inverse transformation F 21.

Further, we shall apply the construction of n-regular isoparametric triangulation th
presented by Lenoir (1986).

Let Fh: Vh ! V be the invertible mapping obtained by Lenoir (1986) and
fh:Gh ! G be its restriction on the boundary Gh. The map Fh plays an important role
in our analysis, therefore we present some basic features of this mapping. The map Fh:

. is equal to the identity map on elements, which do not belong to the boundary
layer;

. have the property that the distance from any point on G to the closest point on Gh

is Ch nþ1 at most; and
. has the following estimates for the Fréchet derivatives and Jacobians:

j J ðFhÞj0;1;Vh
¼ Oð1Þ; j J ðF21

h Þj0;1;V ¼ Oð1Þ; ð1Þ

jFhj1;1;Vh
¼ Oð1Þ; jF21

h j1;1;V ¼ Oð1Þ; ð2Þ

and:

jDðI 2FhÞj0;1;Vh
¼ OðhnÞ; jDðI 2 ðF21

h Þj0;1;V ¼ OðhnÞ; ð3Þ

j J ðFhÞ2 1j0;1;Vh
¼ OðhnÞ; j J ðF21

h Þ2 1j0;1;V ¼ OðhnÞ ð4Þ

where I is the identity map and J(Fh) is the Jacobian of Fh.
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We shall use the following finite dimensional spaces associated with the
triangulation th:

vh ¼ {vh [ Vhjvh ¼ 0 at the edges of V};

Bh ¼ {vhjvh ¼ vhjGh; vh [ Vh};

Vh
0 ¼ {vh [ Vhjvh ¼ 0 on the boundary Gh};

�Vh ¼ {�vh [ vh+F
21
h jvh [ Vh}:

Analogously �V
h

0 consists of those functions from �Vh, which are zero on the boundary G.
A space similar to Vh is used by Pehlivanov et al. (1992) in 2D case where the functions
yh are zero at the corners of V. We shall use also the space:

V
*
¼ {v* ¼ v+Fhjv [ H 1ðVÞ}:

Let Ih: H
1(V) ! Vh be a standard interpolation operator on the whole triangulation th.

Write the approximating bilinear form and L 2-scalar product in Vh:

ahðuh; vhÞ ¼

Z
Vh

X3

i; j¼1

ahijðxÞ
›uh
›xi

dvh
›xj

dx ;uh; vh [ Vh; ð5Þ

ðuh; vhÞh ¼

Z
Vh

uhvh dx ;uh; vh [ Vh;

where ahij ¼ I hða
*
ij Þ.

Definition 1. The bilinear forms (equation (5)) are called uniformly Vh
0-elliptic, if

there exists a constant 1 . 0 independent of the spaces Vh
0, such that for all h

sufficiently small:

1kvhjj
2
1;Vh

# ahðvh; vhÞ ;vh [ Vh
0:

Compile the discrete problem Ph corresponding to the problem PW:

Ph :
find uh [ Vh

0 such that

ahðuh; vhÞ ¼ ð f h; vhÞh ;uh [ Vh
0;

8<
:

where fh ¼ Ih( f *).
Assume that the solution uh of the problem Ph is already found. Then we can

construct the approximate boundary-flux problem:

Fh :
find qh [ Bh such that

2 , qh; vh .h¼ ahðuh; vhÞ2 ð f h; vhÞh ;vh [ Vh

(
;

where:
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, qh; vh .h¼

Z
Gh

qhvh dS:

For the first time a problem similar to Fh is considered by Carey et al. (1985) in the 2D
consistent case.

Notations C, C1, C2, . . . are reserved for generic positive constants, which may vary
with the context.

4. Error estimates
Convergence analysis is the point of interest in this section. Estimates of the error in
the boundary-flux approximations are obtained.

The uniformly Vh
0-ellipticity is a very important property of the bilinear forms

(equation (5)), because this property ensures a unique solution of the problem Ph. Since,
ah ( · , · ) contains variable coefficients we should prove the following lemma.

Lemma 1. Let the triangulation th be n-regular in the sense of Ciarlet and Raviart
(1972) and 1L . 0 be the ellipticity constant of the operator L. Then there exists a
constant h0 for any 1:0 , 1 , 1L such that:

1kvhjj
2
1;Vh

# ahðvh; vhÞ ;h # h0 and ;vh [ Vh
0:

Proof. Define the n-th norm of the matrix A by:

kAkn ¼
i; j[{1;2;3}

max kaijkn;1;V:

Applying Cauchy inequality and y
def
¼FhðxÞ; x [ Vh we have:

X3

i; j¼1

ahijðxÞjijj ¼
X3

i; j¼1

ahijðxÞ2 aijð yÞ
� �

jijj þ
X3

i; j¼1

aijð yÞjijj

¼
X3

i; j¼1

aijð yÞjijj þ
X3

i; j¼1

I hða
*
ij Þ2 a*ij

� �
ðxÞjijj

$ 1L
X3

i; j¼1

j2
i 2

X3

i; j¼1

I hða
*
ij Þ2 a*ij

��� ���
0;1;Vh

jijj

$ 1L
X3

i; j¼1

j2
i 2 Chn

X3

i; j¼1

ka*ijkn;1;Vh
jijj

$ ð1L 2 ChnkAknÞ
X3

i¼1

j2
i

for all x [ Vh and for all j [ R 3.
Denote the Poincaré constant by C (V). Choosing:

h # h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1L 2 1ð1 þ CðVÞÞ

CkAkn

n

s
n

we obtain:
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X3

i; j¼1

ahijðxÞjijj $ 1ð1 þ CðVÞÞ
X3

i; j¼1

j2
i :

We complete the proof using Poincaré inequality:

ahðvh; vhÞ $ 1ðþCðVÞÞ

Z
Vh

7vh ·7vh dx ¼ 1ð1 þ CðVÞÞjvhj
2
1;Vh

$ 1kvhjj
2
1;Vh

·

A

Lemma 1 ascertains that if L is strongly elliptic then the bilinear forms ah( · , · ) are
uniformly Vh

0-elliptic.
A comparison between the bilinear forms ah( · , · ) and a( · , · ) contains in the following
lemma.

Lemma 2. The estimate:

jaðw; �vhÞ2 ahðw*; vhÞj # ChnkAknkwk1;Vjvhj1;Vh
ð6Þ

is valid ;w [ V and ;vh [ 6h if the triangulation th be n-regular.

Proof. Adding and subtracting some terms in the left hand side of equation (6) we
obtain:

jaðw; �vhÞ2 ahðw*; vhÞj

¼

Z
Vh

X3

i; j¼1

a*ij ðxÞð7w
*ðDFhÞ

21 · ejÞð7vhðDFhÞ
21 · ejÞJ ðFhÞdx

�����
2

Z
Vh

X3

i; j¼1

ahijðxÞ
›w*

›xi

›vh
›xj

dx

����� # ChnkAknkwk1;Vkvhk1;Vh

þ

Z
Vh

X3

i; j¼1

ahijðxÞ ð7w*ðDFhÞ
21 · eiÞð7vhðDFhÞ

21 · ejÞJ ðFhÞ2
›w*

›xi

›vh

›xj

� �
dx

�����
�����;

where {ei, i ¼ 1, 2, 3} is the canonical basis in R3. We use the notation A . B to
indicate that the quantities A and B are uniformly equivalent with respect to the mesh
parameter h. Extending the validity of Proposition 4 by Lenoir (1986) to the whole
triangulation th we obtain:

kfkm;V . kf *km;Vh
; 0 # m # n ;f [ H nþ1ðVÞ; ð7Þ

kf km;G . kf +fhkm;Gh
; 0 # m # n2 1=2 ;f [ H n21=2ðGÞ: ð8Þ
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Then:

jaðw; �vhÞ2 ahðw*; vhÞj # ChnkAknkwk1;Vjvhj1;Vh

þ

Z
Vh

X3

i; j¼1

ahijðxÞ 7w*ðDFhÞ
21 · _e

i

� ������
� 7vhðDFhÞ

21 · _e
j

� �
ðJ ðFh 2 1Þdx

���
þ

Z
Vh

X3

i; j¼1

ahijðxÞ 7w*ðDFhÞ
21 · _e

i

� �h�����
� 7vhðDFhÞ

21 · _e
j

� �
2 ð7w* · _e

i
Þð7vh · _e

j
Þ
i
dx
���

# CkAknkwk1;Vjvhj1;Vh
ðhn þ k J ðFhÞ2 1k0;1;Vh

Þ

þ

Z
Vh

X3

i; j¼1

ahijðxÞðð7w
*ÞtðDFhÞ

21
_e
i
Þðð7vhÞ

t½ðDFh 2 I 3Þej�dxÞ

�����
�����

þ

Z
Vh

X3

i; j¼1

ahijðxÞ½ð7w
*ðDFhÞ

21
_e
i
Þð7vh · ej�

�����
2ð7w* · _e

i
Þð7vh · ejÞ�dx

���
where I3 is the 3 £ 3 identity matrix. Applying equations (1)-(4) we obtain:

jaðw; �vhÞ2 ahðw*; vhÞj # ChnkAknkwk1;Vkvhj1;Vh

þ

Z
Vh

X3

i; j¼1

ahijðxÞð7w
*ðDFhÞ

21 · _e
i
Þð7vhDðF

21
h 2 I Þ · ejÞdx

�����
�����

þ

Z
Vh

X3

i; j¼1

ahijðxÞð7w
*DðF21

h 2 I Þ · _e
i
Þð7vh · ejÞdx

�����
�����

# CkAknkwk1;Vjvhj1;Vh
ðhn þ jDðF21

h 2 I Þj0;1;VÞ

# ChnkAknkwk1;Vjvhj1;Vh
·

ARestricting the inequality equation (6) to the elements of Vh
0 (replacing w with wh+F

21
h ,

wh [ Vh
0 in equation (6)) we obtain:

jað �wh; �vhÞ2 ahðwh; vhÞj # ChnkAknk �whk1;Vjvhj1;Vh
ð9Þ

;wh [ Vh
0 and ;vh [ Vh.

Theorem 1 gives an estimate for the error in discrete solution uh of the problem Ph.
Theorem 1. Let u and uh be the solutions of the problems PW and Ph

correspondingly. Let also the hypotheses C1-C3 be valid, the matrix A ¼ (aij (x))

i,j[{1,2,3} be uniformly positive definite in V and the triangulation th be n-regular.
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Then:

jaðu; vhÞ2 ahðuh; vhÞ # Chn{kAknkuknþ1;V þ kf kn;1;V}jvhj1;Vh
;vh [ Vh:

Proof. Let Ph: H
1
0ðVÞ! �V

h

0 be an orthogonal projection operator with respect to the
energy scalar product a( · , · ) and k · ka be the corresponding energy norm.

Our first purpose is to estimate the difference ku 2 ǔhk1,V. Rewrite the abstract
estimate (Brenner and Scott, 1994, p. 210):

ku2 �uhka # ku2 Phuka þ
uh[Vh\{0}

sup
jað�uh; �vhÞ2 ahðuh; vhÞj

k�vhka

þ
uh[Vh\{0}

sup
jað f ; �vhÞ2 ð f h; vhÞhj

k�vhka
:

ð10Þ

Applying the inequality (Lemma 8 by Lenoir, 1986)

jð f h; vhÞh 2 ð f ; �vhÞj # Chnkf kn;1;Vk�vhk0;V ð11Þ

and equation (9) to the abstract estimate equation (10) we obtain:

ku2 �uhk1;V # Chn{kAknkuknþ1;V þ kf kn;1;V}: ð12Þ

Using Cauchy inequality, equation (12) and Lemma 2 we have:

jaðu; �vhÞ2 ahðuh; vhÞj # jahðuh; vhÞ2 ahðu*; vhÞj þ jahðu*; vhÞ2 aðu; �vhÞj

# ðkuh 2 u*k1;Vh
þ ChnkAknkuk1;VÞjvhj1;Vh

# ðku2 �uhk1;Vh
þ ChnkAknkuk1;VÞjvhj1;Vh

# ChnðkAknkuknþ1;V þ kfkn;1;VÞjvhj1;Vh
;

which complete the proof. A
Theorem 2 is the main result in the present paper. The L 2-error in the finite element

approximations of the flux across the boundary is estimated by O(h n21/2).
Theorem 2. Suppose that the matrix A is uniformly positive definite in V, the

hypotheses C1-C3 hold and the triangulation th is n-regular. Let q and qh, be the
solutions of the problems FW and Fh, respectively. Then:

kq2 qh+f
21
h k0;G # Chn21=2ðkAknkuknþ1;V þ kfkn;1;VÞ: ð13Þ

Proof. Let Ih: H
1/2 (G) ! Bh be a standard interpolation operator on the whole

boundary. At first we estimate the difference qh 2 qI, where qI ¼ Ih(q+fh). From the
imbedding theorems (Adams, 1975) it follows that q [ H n21/2 (G) if u [ H nþ1(V).
Moreover:

kqkn21=2;G # Ckuknþ1;V:

Applying the equalities from FW and Fh we obtain:

, qh 2 qI ; vh .h¼, qh 2 q+fh; vh .h þ , q+fh 2Ihðq+fhÞ; vh .h; ð14Þ
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j , qh 2 q+fh; vh .h j # j , qh; vh .h 2 , q; �vh . j

þ j , q; �vh . 2 , q+fh; vh .h j

# jð f h; vhÞh 2 ð f ; �vhÞj þ jahðuh; vhÞ2 aðu; �vhÞj

þ j , q; �vh . 2 , q+fh; vh .h j:

ð15Þ

Estimate:

j , q+fh 2Ihðq+fhÞ; vh .h j # Chn21=2kq+fhkn21=2;Gh
kvhk0;Gh

# Chn21=2kqkn21=2;Gkvhk0;Gh

by standard interpolation theory and equation (8):

j , q; �vh . 2 , q+fh; vh .h j # Chn21=2kqkn21=2;Gkvhk0;Gh

by Lemma 9 (Lenoir, 1986), the first term in equation (15) by inequality equation (11)
and the second term in equation (15) by Theorem 1.

Then:

j , qh 2 qI ; vh .h j # Chn21=2 kqkn21=2;Gkvhk0;Gh
þ h 1=2ðkAknkuknþ1;V

n
þkfkn;1;VÞkvhk1;Vh

	
:

Consider a function wh [ 6h, which is equal to zero for all internal nodes of the
triangulation th. It follows kwhk1,Vh # Ckwhk1/2,Gh and:

j , qh 2 qI;wh .h j # Chn21=2ðkAknkuknþ1;V þ kfkn;1;VÞkwhk0;Gh: ð16Þ

Replacing:

wh ¼
qh 2 qI on Gh

0 for all internal nodes of th

(

in equation (16) we have:

kqh 2 qIk0;Gh
# Chn21=2ðkAknkuknþ1;V þ kfkn;1;VÞ:

It remains to use the triangle inequality, equations (8) and (17) to obtain:

kq2 qh+f
21
h k0;G # Ckq+fh 2 qhk0;Gh

# Cðkq+fh 2 qIk0;Gh
þ kqI 2 qhk0;Gh

Þ

# Chn21=2ðkAknkuknþ1;V þ kf kn;1;VÞ;

which finish the proof. A

5. Conclusion
The proof of Vh

0-ellipticity of ah ( · , · ) and the comparison between the bilinear
forms enable us to prove optimal convergence rate for the consistent isoparametric
boundary-flux approximations. General results are obtained for complex domains with
Lipschitz-continuous boundary and arbitrary tetrahedral isoparametric elements.
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