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Abstract

Purpose — To obtain error estimates for 3D consistent boundary-flux approximations.
Design/methodology/approach — Isoparametric approach is used for constructing finite-element
approximations.

Findings — This research study presents a convergence analysis of 3D boundary-flux
approximations. Error estimates are proved for the approximate solutions of the problem under
consideration.

Research limitations/implications — General results for a consistent boundary-flux problem are
obtained for all 3D domains with Lipschitz-continuous boundary. This investigation will be continued
studying combined effect of curved boundaries and isoparametric numerical integration. An optimal
refined strategy with respect to algorithmic aspects for solving 3D boundary-flux problem also will be
considered.

Practical implications — The obtained results enable engineers to calculate the flux across the
curved boundaries using finite element method (FEM).

Originality/value — The paper presents an isoparametric finite-element method for a 3D consistent
boundary-flux problem in domains with complex geometry. The work is addressed to the
possible-related fields of interest of postgraduate students and specialists in fluid mechanics and
numerical analysis.
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1. Introduction

Computation of boundary-flux is well motivated concerning various engineering
problems, for instance the classical drift-diffusion model, determination of the behavior
of the body immersed in a viscous incompressible fluid, obtaining of stress intensity
factor, moments of a shell or plate, heat and mass transfer, potential flow,
magnetostatics, elasticity problems, etc.

The finite element method (FEM) is among the most powerful tools for solving
boundary value problems and, in particular, for solving boundary-flux problem. Early
applications of FEM for finding boundary-flux approximations are based on the idea
proposed by Wheeler (1973) and developed by Carey (1982) (Carey et al., 1985). Confine
to polygonal domains and affine FEM Barret and Elliot (1987) proved an asymptotic
error O(h "~ V%) in approximate flux, where 7 is the degree of trial functions.

Various postprocessing techniques for increasing the rate of convergence of the
boundary-flux approximations are developed by Douglas et al. (1974), Lazarov and
Pehlivanov (1989) and Pehlivanov et al (1992). More recent results concerning
boundary-flux computations are obtained by Carey (2002), Chipot and Rougirel (2001),



Huang and Zhong (2004), Zheng and Song (2004), etc. The above results are obtained in
polygonal domains. Problems in curved domains need completely different approach,
namely isoparametric approach. Optimal convergence rate for the boundary-flux
approximations in two-dimensional domains with complex geometry was proved by
Andreev and Todorov (2005). Here the optimality is in the sense that isoparametric
approximations have the same rate of convergence as the ones in the affine case where
polygonal domains are considered.

Lenoir (1986), Brenner and Scott (1994) and Andreev and Todorov (2005) give
comparisons between the bilinear forms only in the case when L = A. Comparisons
between bilinear forms arising from general second-order elliptic operator are
presented here.

The present investigation deals with a FEM for 3D boundary flux problem in a
curved domain with Lipschitz-continuous boundary. The paper is organized as
follows. The weak formulation of the boundary-flux problem is compiled in Section 2.
Finite element discretizations and some basic properties of Lenoir map are described in
Section 3. Optimal convergence order for the boundary-flux approximations is proved
in Section 4. This is the main result in the present investigation.

2. Setting of the problem
Let O C R® be a bounded curved domain with Lipschitz-continuous boundary T.
Define a Dirichlet problem:
find a functioin # satisfying
Pl Lu=f in Q,

u=0onT

The map:

3

ad ad
Iu—=-S""2 (42
. 2 0x; (alj ax-)

1

1,7=1

is a linear operator with a; € C 1), i,7=1,2,3. Assume that the matrix
A = (@;(%)); jen 23 1s uniformly positive definite in (), ie. the operator L is
strongly elliptic.

Standard notations for the Sobolev spaces (Ciarlet, 1978) and associated norms and
seminorms are used throughout this consideration. Define the Sobolev space:

HyQ) = f{veHQ)|v=0 on T},
the bilinear form:

3
8% Jv 1

= E () — —dx, 2weV=H,Q

a(u,v) /Ql-j_la](x)axi ax{dx u,v eV 0(Q)

and the linear functional:
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(f,v):/fvdx, veV.
Q

The bilinear form a(-,-) is coercive on V X'V, since L is strongly elliptic. The
boundedness of @; on €} implies that a(-,-) is continuous on A L.
Write the weak problem Py associated with P:

find a function # € V such that
P : a(u,v) = (f,v) Yo e V.

Introduce the usual hypotheses concerning the smoothness of the weak solution:
C1. The boundary I is piecewise C"*1 n = 2.
C2. The right hand side f € W"*(Q) and the weak solution # € H"t1(Q).
C3. The coefficients a; € W™ ().

Define the normal flux ¢ across boundary I' by:
3
=on= Z Z](x)— cos(n,xj), x €T,

where « is the solution of Py, ¢ = —A!(Vu) is a vector function, » is the outward
normal vector to the boundary I" and “t” is the sign for transposition.
Define the weak boundary-flux problem as follows:

find a function ¢ € HV2(I") such that

TV C < g >=awv) — (f,0) Vo € HY(Q),

where < -,- > denotes the inner product on the boundary, i.e.
<q,0>= / quds.
r

3. Finite element discretizations

This section dwells largely on tetrahedral triangulations of curved domains. Usually,
when solving a problem in a curved domain ) we separate some “nice” domain
Q) C ), which can be triangulated by straight elements. The domain () is as big as
possible. Triangulate the rest of ) by curved elements.

Rewrite some basic definitions concerning finite element triangulations. Assume
that any finite element K € 7, is generated by invertible isoparametric finite element
transformation Fx defined on one and the same element (7, P, ) called reference finite
element.

Define the reference finite element as follows:

3
T: {&: (&1,%27-%2)|&i = 0, i = 1;2,3, ZJ’Z‘Z = 1}
=1



is the canonical 3-simplex; pP= Pn(f'), where P, is the space of all polynomials of
degree, not exceeding 7:

3

S = {Zzl&i 2@7 1=1,2,3, Zki =n kENUI{0}, i= 1,2,3}
n =1

is the set of all Lagrangian interpolation nodes of order 7.

The boundary layer of any triangulation 7;, consists of those elements, which have
more than one vertex on the boundary. Unifying all the elements in triangulation 7;, we
obtain an approximate domain (), = Uge,, K with boundary I';,.

Define the finite element space V;, by:

Vi, = {v, € CC)lvyk € P, K € 7,4,

where P = {p : K —Rlp = poF, p € P}. It is well known that V;, C H'((),) if
the triangulation 7, is regular.

If a map F(x) is k-times differentiable, we denote the &-th Fréchet derivative of F(x)
by D kF(x). Let £, (R>: R?) be the space of continuous 7-linear mappings from (R®)” to
R? and K, K be bounded subsets of R>. For estimating the Fréchet derivatives and
Jacobians we need the following seminorms:

], o i = SUp ID"F®)lz, gege),
o reK
IF M, i = §ug ID"F ' ®)ll s, wegsy, 7=0,1,2,...
xe

for arbitrary sufficiently smooth transformation F : K — K with sufficiently smooth
inverse transformation F ~ %

Further, we shall apply the construction of z-regular isoparametric triangulation ,
presented by Lenoir (1986).

Let ®;: Q; — Q be the invertible mapping obtained by Lenoir (1986) and
¢y:I';, — T be its restriction on the boundary I';,. The map ®;, plays an important role
in our analysis, therefore we present some basic features of this mapping. The map &),

* is equal to the identity map on elements, which do not belong to the boundary
layer;

+ have the property that the distance from any point on I" to the closest point on I},
is Ch* ! at most; and

* has the following estimates for the Fréchet derivatives and Jacobians:

|J( @)oo, = 0Q),  |J(@;Dlowa = O1), 6
|Ppl1,000, = OD), 1D}, 000 = OL), @)
and:
IDU — ®p)loo,a, = OR"),  IDUI = (@ Hloewa = OR"), ®)
1J(@1) = Lo, = O™,  1J(®,") = 1loe0 = O™ )

where [ is the identity map and J(®,,) is the Jacobian of @,
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We shall use the following finite dimensional spaces associated with the
triangulation 7

v, = {v, € Vylv, =0 at the edges of O},
B, = {wploy = vyl 0 € 773},
Vg = {v, € Vlv, =0 on the boundary Iy},
V), = {0y € vo®; oy, € V).

v ] . . hd .
Analogously Vg consists of those functions from V,, which are zero on the boundary I'.
A space similar to 77}, is used by Pehlivanov ef al. (1992) in 2D case where the functions
vy, are zero at the corners of (). We shall use also the space:

= (0" = vodylv € H'(Q)}.

Let I,; HY() — V;, be a standard interpolation operator on the whole triangulation 7,
Write the approximating bilinear form and L %scalar product in Vj;

duy, vy,
aniun, vy) = / S dir o o Y, € Vi 5)

lzl] 1

(Up, vp)y, = / upvpdx  Yuy,v, € Vy,
Qh

where a =] h(ﬂ,])

Definition 1. The bilinear forms (equation (5)) are called umformly Vh elliptic, if
there exists a constant € > 0 independent of the spaces VO, such that for all 2
sufficiently small:

2 ]
Sllvh”l,gh = (v, ) Vo, € V(f

Compile the discrete problem P, corresponding to the problem Py

find u, € Vf)‘ such that

h
ap(up,vp) = (fn,0n),  Yuy € Vg,

where f, = L,(f ).
Assume that the solution #;, of the problem P, is already found. Then we can

construct the approximate boundary-flux problem:

find ¢q;, € B;, such that
5711 :

= < qn,vp == ap(up,vp) — o0, Yo, €V

where:



< qp,vp >p= / qnvy, dS.
Fh

For the first time a problem similar to }, is considered by Carey et al (1985) in the 2D
consistent case.

Notations C, Cy, Cs, ... are reserved for generic positive constants, which may vary
with the context.

4. Error estimates
Convergence analysis is the point of interest in this section. Estimates of the error in
the boundary-flux approximations are obtained.

The uniformly Vg-ellipticity is a very important property of the bilinear forms
(equation (5)), because this property ensures a unique solution of the problem 7, Since,
ay, (+,+) contains variable coefficients we should prove the following lemma.

Lemma 1. Let the triangulation 75, be n-regular in the sense of Ciarlet and Raviart
(1972) and &; > 0 be the ellipticity constant of the operator L. Then there exists a
constant /iy for any .0 < & < e, such that:

sllvhlliﬂh = ay(vy,vy) Yh < hy and Yy, € Vg.
Proof. Define the n-th norm of the matrix A by:

IAIl,, 7jé1}%7§3}||aﬁlln,w,()~

Applying Cauchy inequality and ydéfd)h(x), x € )y, we have:

ij=1

3 3 3
S aimEs=> (aZ-(x) - aij(y)) &5+ ay(n&G
= =

3 3
= > aag+ > (@) - @) weg
ij=1 ij=1
3

3
2 _
=e) &)
=1

i,j=1

% %
I (al»]-) —a;

0,00,)y, & gj

3 3
2 *
=egr E 51- - Ch" g ”al‘j”n,ooﬂhfifj

1,7=1 1,7=1
3

= (e — CR"IAILY &
=1

for all x € O, and for all £ € R®,
Denote the Poincaré constant by C ({2). Choosing:

_ajer —e(l+ C(Q))M
h = h() = \/ C”A”n N

we obtain:
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Z di0&g = e(1+ cm»Z g.

1,j=1 1,j=1

We complete the proof using Poincaré inequality:
@y, v) = 8(+C(QD) /Q Vo, - Vo dx = &1+ CQQ)luil} o, = ellogll? o, -
h

[l
Lemma 1 ascertams that if L is strongly elliptic then the bilinear forms a,(-,*) are

uniformly VO -elliptic.
A comparison between the bilinear forms a,(-,*) and «a(-,-) contains in the following
lemma.
Lemma 2. The estimate:
laGw, y) — an@™, op)l = CR" ANl llwlh aloal o, (6)

is valid Vw € V and Vv, € g, if the triangulation 7;, be n-regular.

Proof.  Adding and subtracting some terms in the left hand side of equation (6) we
obtain:

v Ed
la(w, vy) — ah(w o)l

/Q Za,]u)(wv (DPy) " g)(Vorn(DPy) '+ )] (Py)x

hz] 1

aw avh
/ dx’ Al el ollonll o,
Q

hz]

ow™ ovt
h(x)[(Vw (D®y) )T (DD - (@) — T }dx‘,

9x; 0X;

Izl]

where {¢;, i =1, 2, 3} is the canonical basis in R®. We use the notation 4 = B to
indicate that the quantities A and B are uniformly equivalent with respect to the mesh
parameter . Extending the validity of Proposition 4 by Lenoir (1986) to the whole
triangulation 7;, we obtain:

|V”m.ﬂ = ”f*”mﬂw O=m=mn Vf € Hn+1(Q)a (7)

WA llor = Wfedullmr,, O=m=n—1/2  Vfe€H"Y¥I). ©)



Then:

law, B) — ay@”,vp)| = Ch”IIAIIHIIWIhlehlm,,
+ / ZaZ(x) Vw (D)~ ! _Z)
/11] 1

X

/N

VorD®)) ¢ ) (@ — x|

+ / ZaZ(x) Voo™ (DD ! )
Q

hl] 1

(VU;Z(D(I)}!) ) (Vw e)(Vv;Z e)}dx‘
= C”A”n”WHIlehll,ﬂh(hn +17(@p) — 1lo.0,0,)

d/8>

+ [ 3 T D) e )Ty

hz; 1

a0V D) ™ e (Vo) (DD, = ls)ej]dx)‘

M] 1

—(Vw’™-e)(Voy 'gj)]dx’

where I3 1s the 3 X 3 identity matrix. Applying equations (1)-(4) we obtain:

law, 9) — ap@”, o)l = Ch"||All, ||W||m||0h|1,9,,

SOV DBy~ e )(Vu D@, = 1) -e;-)dx'

/11] 1

/ > a(Vw D@ —1)-e)(Voy ~gj)dx’
@, i,j=1 !

= CllAILNlwlly olonl., (0" + D@, = Dlgeo.)
= Cn"|Allllwll olvnli o, -

Restrlctlng the inequality equation (6) to the elements of Vi (replacing w with w;p@ﬁ
wy, € V0 in equation (6)) we obtain:

la(@oy, Up) — ap(wy, vp)l = CRIAN sl olonl o, )

Yw, € Vg and Vv, € 77,
Theorem 1 gives an estimate for the error in discrete solution #;, of the problem P,
Theorem 1. Let u and wu;, be the solutions of the problems Py and P,
correspondingly. Let also the hypotheses CI-C3 be valid, the matrix A = (g; (v))
ije (123 be uniformly positive definite in €) and the triangulation 7, be n-regular.
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Then:
|Cl(%,7)]l) - ah(uhavh) = Ch”{”A”n”u”rH-l,Q + |If||n,00,ﬂ}|vh|1,ﬂh Vvh € Vh-

Proof. Let P H, (l)(Q) — \7’5 be an orthogonal projection operator with respect to the
energy scalar product a(-,-) and ||- ||, be the corresponding energy norm.

Our first purpose is to estimate the difference [lu — #;ll; . Rewrite the abstract
estimate (Brenner and Scott, 1994, p. 210):

laCity, 0y) — an(up, vp)

lle — apll, = lluw — Ppull, + sup

u, €V, \{0} ”7\}11”11 (10)
la(f,0n) = (fr vl
1y €V MO} 2511, '

Applying the inequality (Lemma 8 by Lenoir, 1986)
|y v — 001 = CRf .00 01120110,0 (11)

and equation (9) to the abstract estimate equation (10) we obtain:

e = tpll,0 = CR™ LAl leelli1.0 + 1 llw0} - 12)

Using Cauchy inequality, equation (12) and Lemma 2 we have:

laGu, ¥4) = an(uen, o)l = lan(un, vi) = an(e™ o)l + lan(™ vp) — a(u, ¥,)|
= (luy, — u™ll.0, + CR" ANl )lvyl1 0,
= (lle — wlly. 0, + CR" Al Nl 0)lonlr g,
= C" Al el 1,0 + 1o )|0nl1.0, 5
which complete the proof. O
Theorem 2 is the main result in the present paper. The L Zerror in the finite element
approximations of the flux across the boundary is estimated by O(2"~ 2).
Theorem 2. Suppose that the matrix A is uniformly positive definite in {2, the

hypotheses CI-C3 hold and the triangulation 7, is n-regular. Let ¢ and g, be the
solutions of the problems Fj and JF, respectively. Then:

lg = guedy, llox = C"2IAN Nl 1.0 + 1Tl eo 0)- (13)

Proof. Let #;,; HY? () = B, be a standard interpolation operator on the whole
boundary. At first we estimate the difference g;, — ¢, where q; = .#,(god;,). From the
imbedding theorems (Adams, 1975) it follows that ¢ € H" 2 (I') if u € H"T1(Q).
Moreover:

"CIIIM—I/ZA,F = C”u“n-&-l,ﬂ-
Applying the equalities from Fy and F;, we obtain:

<qn = qr, v >p=<q — @by, vy > + < qody, — Tp(qody), v >, (14)



| <aqn— g, on>n | = | < quvw > — <q,%, > |
+1<q,% > — < godp, v > |
= |Fnown — £,V + lap(uy, vp) — alu, )|
+1<q, ¥, > — < gy v > |

(15)

Estimate:
| < goby — Iu(@odn),vn =1 | = Ch" Pllgedpyll,—1 /o, lonllor,
= " Ylgll-1 2 rllonllor,
by standard interpolation theory and equation (8):
| <q,0, > — <gqodp, v, > | = Ch’771/2||t1||n71/2,r||vh||0,r,1

by Lemma 9 (Lenoir, 1986), the first term in equation (15) by inequality equation (11)
and the second term in equation (15) by Theorem 1.
Then:

| <aqn—aqnvn>nl= Chnfl/z{||6]||n—1/2,r||0h||o,rh + 2| Al 1.0
"l‘”flln,oo,ﬂ)llvhlll,ﬂh}-

Consider a function w;, € s;, which is equal to zero for all internal nodes of the
triangulation 7, It follows |lwylly.0n = Cllwpll1/,ry, and:

| <qn— qs, Wy >y | = Chnil/z(”A”n”u"n-H,Q + ”f”n,oo‘ﬂ)”whlloa Fh- (16)

Replacing:
qn—qr on I
Yh=30 for all internal nodes of =,

in equation (16) we have:

llgn = arllor, = C""2lANL Nl 1.0 + I llno.0)-

It remains to use the triangle inequality, equations (8) and (17) to obtain:
lg — aredpy, lor = Cligedn — aullor, = Clllgedn — aillor, + llar — anllor,)

= C" 2(lAN 1.0 + Flleo.0),
which finish the proof. O

5. Conclusion

The proof of Vg-ellipticity of a; (,-) and the comparison between the bilinear
forms enable us to prove optimal convergence rate for the consistent isoparametric
boundary-flux approximations. General results are obtained for complex domains with
Lipschitz-continuous boundary and arbitrary tetrahedral isoparametric elements.
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